L22 March 8 Compact

Tuesday, March 3, 2015 9:58 AM

Qu. IR is not compact, but it has a nice property close to compact. What is it? Locally Compact A topological space (X,]) is locally compact if VXEX I compact K such that XEKCK Compact neighbor hood Danger. The definition is inconsistent with others Usually, for a topological property =, \$. DX, X is locally : ADA if V x e X I a local base of \$DA-nonds at X. That is, V nond Ug X J·☆DA-nobods V such that x ∈ V ⊂ U compact a locally compact Fact T2 Why? I compact night have One-point Compactification Given a locally compact Tz space (X, J) Then I compact T, space (X*, J*) such that (i) X* X is a singleton \tilde{u} $\mathcal{J} = \mathcal{J} |_{\mathcal{X}}$ (iii) X is noncompact $\implies X = X^*$ X is compact $\rightarrow X^* \setminus X$ is isolated

L22 p2

Tuesday, March 3, 2015 10:38 AM

Assume $\infty \notin X$, define $X^* = X \cup \{\infty\}$ and J*= JU [Joofu (X1K): KCX is compart? open as X is T2 D Verify that J* is a topology Crucial: aEI (X Ka) = X AEI Ka both compact $\hat{\bigcap}_{i \neq i} (X \setminus K_i) = X \setminus \hat{\bigcup}_{j \neq i} K_j$ (X*, J*) is Hausdorff The Key step: xEX, ∞EX* XET, OF INJU(X1K) and Un(XK)=Ø ⇔ xeUCK \bigcirc (X*, J*) is compact Key idea: if X* = UU, USw}U(X\K) then [Va] covers K and has a finite subcover If X is compact, $\frac{1}{200}U(X \times X) \in J^{k}$ (4) . we fast is isolated If X \ X , then X = X I noted of as, foos U(XLK) disjoint from X Only possible ? > > U(X K), K=X i. X is compact

L22 p3

Monday, March 9, 2015 11:58 AM

Heine-Borch Every open cover has a finite subcover Other related compactness Countably Compact Every countable open cover has a finite subcover Rolzano-Weierstrass Every infinite set has a cluster point in X. If ACX is infinite then I XEX S.T. $\forall U \in J \quad \text{iff} \quad x \in U, \quad U \cap A \setminus [x] \neq \emptyset$ Sequentially compact Every sequence has a convergent subsequence. V sequence (Xn) in X, I subsequence (Xnk) such that Xnk -> x EX E----X---> Sequentially compact Heine-Borel Lindelof Compact T T

L22 p4

Monday, March 9, 2015 2:26 PM

Sequentially Compact => Bolzano Weierstrass Let ACX be infinite Create an infinite segnence (an)new in A Get a convergent subsequence $a_k \longrightarrow X \in X$ Expect that XEA' Let UEJ with XEU By ank -> x, JROEN St. V K=k. $G_{n_k} \in U$. Qnk EUNA How & why Gnke UnA {x} Method. Pick a distinct sequence aneA, i.e., antan . The set { an : n e N } is infinite $\exists \Omega_{n_k} \longrightarrow \chi \in X$, If X=an for some LEN then remove line We have a subsequence (ank) KEN such that * any ~ x as 4 -> 00 * any = any ¥ kjen * ank = x Y KEIN

L22 p5 Monday, March 9, 2015 2:46 PM

Bulzano-Weierstrass T Sequentially compact Let (Xn)new be a sequence in X Consider A = { Xn : ne M } Is it infinite? If A is finite, I constant subsequence and it converges Assume that A is infinite, by Rolzano-Weierstrass, -] XEA', i.e. V JEJ with XEJ, \$= UnAlsx} As X is CI, let U={U_k: kell} be a local base at x. Then UKALIXS=\$ Qu. How to pick a subsequence in UknA and make sure it converges? * First, since A = {x_n=nem} is infinite, so is the set AIXX We may assume Xn + x and Xm + Xn Hm, n * Pick Xn, EU, nA \IX} * Consider $V_2 = U_1 \cap U_2 \setminus \{X_1, X_2, \dots, X_n\} \in J$ because X is T₁. $J \times n_2 \in V_2 \cap A \setminus \{x\}$ * Similarly, Xnx E VK nA XX ? where $V_{k} = U_{1} \cap \cdots \cap U_{k} \setminus \{x_{1}, x_{2}, \cdots, x_{N_{k-1}}\}$

L22 p6 Monday, March 9, 2015 3:11 PM

Countably Compact => Bolzano-Weierstrars Qu. Think of an infinite set without cluster point The obviously answer is ZCR or Z²CR². Qr. Find a countable cover for R² which has no finite subcover eq. $\{B(x, \frac{1}{2}): x \in \mathbb{Z}^2\} \cup \{\mathbb{R}^2 \setminus \mathbb{Z}^2\}$ Qu. Produce a proof for the contrapusitive from this example. Let ACX be an infinite set and A'= \$ Take a countable subset BCA, B'=\$ (D B is discrete Let bEB. As B'=0, b&B' .:] U E I nith be Up such that $U_b \cap B \setminus \{b\} = \{b\}, i.e., U_b \cap B = \{b\}$ (2) XIB is open Let reXIB. As x & B' J Uxe'] with xeUx, UxnB\[x]=\$ $\therefore U_{x} \setminus \{x\} \subset X \setminus B$ $x \in U_X \subset X \setminus B$

L22 p7 Monday, March 9, 2015 3:28 PM

Bolzano-Weierstrass - Countably Compact Let {Un: nEN} be a constable open cover for X How to get an infinite set? Idea, if U.U.U.U.D. DX then I x beyond! But if Xn cluster at X, then many points can be covered by a single Un Take any $x_1 \in \bigcup_{n=1}^{\infty} U_n = X$ Then x, E Un, but x, & UIU...UUn-1 If X = U Un then we have $\chi_2 \in U_{n_2}$, $\chi_2 \notin U_1 \cup \dots \cup U_{n_1} \cup \dots \cup U_{n_{j-1}}$ Claim. The process must stop at finite step ! i.e. $X = \bigcup_{n=1}^{\infty} \bigcup_{n}$, finite subcover Assume not, 3 înfinite [Xg: gen) where xg e Ung but xg & Uj for j < ng We will show A'=\$, i.e., V x EX, x & A' Since X= UIn, XEUn for some m. Thus, we have $n_N < m \leq n_{N+1}$ \mathcal{T}_1 \mathcal{T}_2 \cdots \mathcal{T}_{n_1} \cdots \mathcal{T}_{n_2} \cdots \mathcal{T}_{n_N} \cdots $\mathcal{T}_{n_{N+1}}$ \cdots X_1 X_2 X_N X X_N+1 By construction, no XN+1, XN+2, XN+3, X is T_1 , $\therefore x \in V = U_m \setminus \{x_1, x_2, \dots, x_N \text{ or } x_{N+1}\} \in J$ But $V \cap A \setminus \{x\} = \emptyset$